Abstract

Cationic nanocarriers have emerged as promising nanoparticle systems for the effective delivery of nucleic acid and anticancer drugs to cancer cells. A positive charge is desirable for promoting cell internalization, whereas it also causes some adverse effects, such as toxicity and rapid clearance by mononuclear phagocytic systems. Herein, a new strategy of modifying cationic polymer micelles with albumin forming a protein corona to improve the surface physiochemical properties is reported. The corona with a monolayer or a multilayer was constructed depending on the albumin concentration, and the proteins would denature in different degrees due to the interaction with the surface of cationic micelles. It is demonstrated that multilayer albumin corona is beneficial to prevent macrophage uptake, increase accumulation in tumor tissues, and reduce toxic side effects to normal tissues. Our work provides a promising method to modify the cationic nanoplatform by optimizing the biosecurity and bioavailability for potential application in drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.