Abstract

De novo expression of CD44 in glomerular parietal epithelial cells (PECs) leads to a prosclerotic and migratory PEC phenotype in glomerulosclerosis. However, the regulatory mechanisms underlying CD44 expression by activated PECs remain largely unknown. This study was performed to examine the mediators responsible for CD44 induction in glomerular PECs in association with diabetes. CD44 expression and localization were evaluated in the glomeruli of Zucker diabetic rat kidneys and primary cultured PECs upon albumin stimulation. Real-time polymerase chain reaction confirmed an albuminuria-associated upregulation of the CD44 gene in the glomeruli of diabetic rats. Immunostaining analysis of diabetic kidneys further revealed an increase in CD44 in hypertrophic PECs, which often contain albumin-positive vesicles. Losartan treatment significantly attenuated albuminuria and lowered CD44 protein levels in the diabetic kidneys. In primary cultured rat PECs, rat serum albumin (0.25-1 mg/ml) caused a dose-dependent upregulation of CD44, claudin-1, and megalin protein expression, which was accompanied by an activation of extracellular signal-regulated kinase1/2 (ERK1/2) signaling. Albumin-induced CD44 and claudin-1 expression were greatly suppressed in the presence of the ERK1/2 inhibitor, U0126. In addition, knockdown of megalin by small interfering RNA interference in PECs resulted in a significant reduction of albumin-induced CD44 and claudin-1 proteins. Taken together, our results demonstrate that albumin induces CD44 expression by PECs via the activation of the ERK signaling pathway, which is partially mediated by endocytic receptor megalin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call