Abstract

Pancreatic cancer (PC) has a poor prognosis due to chemotherapy resistance and unfavorable drug transportation. Albumin conjugates are commonly used as drug carriers to overcome these obstacles. However, membrane-bound glycoprotein mucin 4 (MUC4) has emerged as a promising biomarker among the genetic mutations affecting albumin conjugates therapeutic window. Human serum albumin-conjugated arsenic trioxide (HSA-ATO) has shown potential in treating solid tumors but is limited in PC therapy due to unclear targets and mechanisms. This study investigated the transport mechanisms and therapeutic efficacy of HSA-ATO in PC cells with different MUC4 mutation statuses. Results revealed improved penetration of ATO into PC tumors through conjugated with HSA. However, MUC4 mutation significantly affected treatment sensitivity and HSA-ATO uptake both in vitro and in vivo. Mutant MUC4 cells exhibited over ten times higher IC50 for HSA-ATO and approximately half the uptake compared to wildtype cells. Further research demonstrated that ALPL activation by HSA-ATO enhanced transcytosis in wildtype MUC4 PC cells but not in mutant MUC4 cells, leading to impaired uptake and weaker antitumor effects. Reprogramming the transport process holds potential for enhancing albumin conjugate efficacy in PC patients with different MUC4 mutation statuses, paving the way for stratified treatment using these delivery vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.