Abstract

The onset and progression of liver diseases and cancer have shown to be affected by over-active macrophages and fibroblasts. Therefore, developing methods to suppress the activation of these cells has become an urgent task. Prior to this study, a mannosylated-albumin (Man-HSA) that targets mannose receptors expressed in hepatic macrophages (Kupffer cells) or fibroblasts was created. Here, we report on the development of medical treatments based on Man-HSA. To target the reactive oxygen species or inflammation derived from Kupffer cells, we developed a nano-antioxidant, i.e., polythiolated (SH)-Man-HSA, by introducing thiol groups into Man-HSA, or a nano-anti-inflammatory drug, i.e., Man-HSA-IFNα2b, by fusing Man-HSA and IFNα2b. SH-Man-HSA or Man-HSA-IFNα2b attenuated Kupffer cell-derived oxidative stress or inflammation, respectively, resulting in the suppression of liver damage and overall improvement of the survival rate in mice with acute and chronic liver injuries. Tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF), both of which are present in the stroma of intractable cancers, also express mannose receptors. Thus, mono-polyethylene glycol modified Man-HSA (monoPEG-Man-HSA) was synthesized as a novel drug delivery carrier targeting TAM/CAF. A complex of monoPEG-Man-HSA with paclitaxel suppressed tumor growth by decreasing the number of TAM/CAF and the stroma area. For the present study, we focused on the mannose receptors expressed in macrophages and fibroblasts, and developed drug delivery carriers that target these cells. Considering the excellent drug-carrying capacity and high biocompatibility of HSA, it is expected that this research will pave the way for innovative pharmacotherapy to treat unmet medical needs, i.e., intractable liver diseases and cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call