Abstract

Individuals with oculocutaneous albinism are predisposed to visual system abnormalities affecting the retina and retinofugal projections, which may lead to reduced visual acuity and Infantile Nystagmus Syndrome (INS). Due to absence of an established mammalian animal model, mechanisms underlying INS remain elusive. In this study, we screened wild-type mice of varying pigmentation for ocular motor abnormalities in order to identify a possible mouse model for INS. Three albino mouse strains (CD1, BALB/c, DBA/1), and two normally pigmented strains (129S6, C57BL/6) were screened using infrared oculography. Varying visual stimuli (black or white background, stationary pattern, optokinetic, i.e., horizontally rotating pattern) were displayed to the full (fVF) or anterior visual field (aVF) of the restrained mouse. We found spontaneous nystagmus, specifically jerks and oscillations, in albino mice under all experimental conditions. Median eye velocity was between 0.8 and 3.4 deg/s, depending on the strain. In contrast, the eyes in pigmented mice were nearly stable with a median absolute eye velocity of below 0.4 deg/s. In albino mice, fVF optokinetic stimuli elicited an optokinetic response (OKR) in the correct direction, albeit with superimposed oscillations. However, aVF optokinetic stimuli evoked reversed OKR in these strains, a well known feature of INS. Based on our results, we endorse the investigated albino mouse strains as new animal models for INS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.