Abstract

Pentatricopeptide repeat (PPR) proteins form a large protein family and have diverse functions in plant development. Here, we identified an ALBINO EMBRYO AND SEEDLING (AES) gene that encodes a P-type PPR protein expressed in various tissues, especially the young leaves of Arabidopsis (Arabidopsis thaliana). Its null mutant aes exhibited a collapsed chloroplast membrane system, reduced pigment content and photosynthetic activity, decreased transcript levels of PEP (plastid-encoded polymerase)-dependent chloroplast genes, and defective RNA splicing. Further work revealed that AES could directly bind to psbB-psbT, psbH-petB, rps8-rpl36, clpP, ycf3, and ndhA in vivo and in vitro and that the splicing efficiencies of these genes and the expression levels of ycf3, ndhA, and cis-tron psbB-psbT-psbH-petB-petD decreased dramatically, leading to defective PSI, PSII, and Cyt b6f in aes. Moreover, AES could be transported into the chloroplast stroma via the TOC-TIC channel with the assistance of Tic110 and cpSRP54 and may recruit HCF244, SOT1, and CAF1 to participate in the target RNA process. These findings suggested that AES is an essential protein for the assembly of photosynthetic complexes, providing insights into the splicing of psbB operon (psbB-psbT-psbH-petB-petD), ycf3, and ndhA, as well as maintaining chloroplast homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.