Abstract

The shape of a wind turbine blade plays a critical role in the efficiency and robustness of energy production. In particular, the Wavy Leading Edge is a morphology that can be implemented in the blades to improve the operating range in unsteady conditions. The best performance is achieved by fine-tuning the blade geometry to the specific context. An aerodynamic exploration of these kinds of morphologies implies generating and evaluating design iterations. Accordingly, this work presents the development of the generative tool Albatros $$\hbox {Create}^{\textregistered }$$. Through interactive visualization, infographics, and centralized parameterization, its goal is to support the geometrical definition of the aerodynamic surfaces of horizontal-axis turbines with or without a wavy leading edge. New airfoil profiles can be created, and 3D models of the rotors designed can be automatically generated. The software was implemented in the design of two rotors which were then recreated in a benchmarking analysis with four other softwares. None of the four managed to generate the smooth surfaces in fully-editable models that were achieved with Albatros Create. This work aims at empowering the research community with a user-friendly tool for exploring rotor designs through virtual prototypes. This can help to integrate further the design, modeling, and optimization stages, addressing a wider audience and facilitating the implementation of Wavy Leading Edge morphologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call