Abstract

실리콘(Silicon, Si) 기판과 <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs 다중 양자 우물(multiple quantum wells, MQWs) 간의 격자 부정합 해소를 위해 <TEX>$AlAs_xSb_{1-x}$</TEX> 층이 단계 성분 변화 완충층(step-graded buffer, SGB)으로 이용되었다. <TEX>$AlAs_xSb_{1-x}$</TEX> 층 상에 형성된 GaAs 층의 RMS 표면 거칠기(root-mean-square surface roughness)는 <TEX>$10{\times}10{\mu}m$</TEX> 원자 힘 현미경(atomic force microscope, AFM) 이미지 상에서 약 1.7 nm로 측정되었다. <TEX>$AlAs_xSb_{1-x}$</TEX>/Si 기판 상에 AlAs/GaAs 단주기 초격자(short period superlattice, SPS)를 이용한 <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQWs이 형성되었다. <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQW 구조는 약 10 켈빈(Kalvin, K)에서 813 nm 부근의 매우 약한 포토루미네선스(photoluminescence, PL) 피크를 보였고, <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQW 구조의 RMS 표면 거칠기는 약 42.9 nm로 측정되었다. 전자 투과 현미경(transmission electron microscope, TEM) 단면 이미지 상에서 AlAs/GaAs SPS 로부터 <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQWs까지 격자 결함들(defects)이 관찰되었고, 이는 격자 결함들이 <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQW 구조의 표면 거칠기와 광 특성에 영향을 주었음을 보여준다. The <TEX>$AlAs_xSb_{1-x}$</TEX> step-graded buffer (SGB) layer was grown on the Silicon (Si) substrate to overcome lattice mismatch between Si substrate and <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs multiple quantum wells (MQWs). The value of root-mean-square (RMS) surface roughness for 5 nm-thick GaAs grown on <TEX>$AlAs_xSb_{1-x}$</TEX> step-graded buffer layer was ~1.7 nm. <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQWs with AlAs/GaAs short period superlattice (SPS) were formed on the <TEX>$AlAs_xSb_{1-x}$</TEX>/Si substrate. Photoluminescence (PL) peak at 10 K for the <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQW structure showed relatively low intensity at ~813 nm. The RMS surface roughness of the <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQW structure was ~42.9 nm. The crystal defects were observed on the cross-sectional transmission electron microscope (TEM) images of the <TEX>$Al_{0.3}Ga_{0.7}As$</TEX>/GaAs MQW structure. The decrease of PL intensity and increase of RMS surface roughness would be due to the formation of the crystal defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.