Abstract
We report a systematic study of how growth temperature affects the quality of AlAs-in-AlSb digital alloy superlattices grown by molecular beam epitaxy for barrier layers in type-II W-structure infrared lasers. Using cross-sectional scanning tunneling microscopy to characterize the atomic-scale structure of the material, we find substantial differences in the superlattice morphology for growth temperatures between 435 and 540 °C. At lower growth temperatures, the AlAs forms three-dimensional clusters, with continuous structures threading through multiple periods of the superlattice. With increasing temperature, the morphology of the digitally doped AlAs layers consistently improves, with nearly perfect delta doping observed at the highest temperatures studied. The changes in the superlattice structure can be attributed primarily to the known temperature dependence of the AlSb growth front morphology, with secondary effects associated with anion-exchange at the interfaces and the different surface reconstructions on the two growth surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.