Abstract

Glioma are the most common malignant central nervous system tumor and are characterized by uncontrolled proliferation and resistance to therapy. Dysregulation of S100 proteins may augment tumor initiation, proliferation, and metastasis by modulating immune response. However, the comprehensive function and prognostic value of S100 proteins in glioma remain unclear. Here, we explored the expression profiles of 17 S100 family genes and constructed a high-efficient prediction model for glioma based on CGGA and TCGA datasets. Immune landscape analysis displayed that the distribution of immune scores, ESTIMATE scores, and stromal scores, as well as infiltrating immune cells (macrophages M0/M1/M2, T cell CD4+ naïve, Tregs, monocyte, neutrophil, and NK activated), were significant different between risk-score subgroups. Overall, we demonstrated the value of S100 protein-related signature in the prediction of glioma patients' prognosis and determined its relationship with the tumor microenvironment (TME) in glioma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call