Abstract

A method is presented to obtain initial conditions for Smoothed Particle Hydrodynamic (SPH) scenarios where arbitrarily complex density distributions and low particle noise are needed. Our method, named ALARIC, tampers with the evolution of the internal variables to obtain a fast and efficient profile evolution towards the desired goal. The result has very low levels of particle noise and constitutes a perfect candidate to study the equilibrium and stability properties of SPH/SPMHD systems. The method uses the iso-thermal SPH equations to calculate hydrodynamical forces under the presence of an external fictitious potential and evolves them in time with a 2nd-order symplectic integrator. The proposed method generates tailored initial conditions that perform better in many cases than those based on purely crystalline lattices, since it prevents the appearance of anisotropies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.