Abstract
To identify functionally important amino acids in the two zinc fingers of transcription factor ADR1 [alcohol dehydrogenase (ADH) II synthesis regulator], oligonucleotide-directed mutagenesis was used to substitute alanine for the original amino acid at each position in both fingers. The effects of these mutations on DNA binding and thermal stability of ADR1 in vitro and on activation of ADH2 expression in vivo were measured. The DNA binding activity was remarkably heatstable. Amino acids that are candidates for DNA contact sites were identified in the finger-tip and alpha-helical region of each finger, three in the first finger and two in the second. Unexpectedly, an acidic residue in the first finger was essential for transactivation, but its replacement by alanine had no effect on DNA binding. Substitution at several highly conserved positions did not affect ADR1 functions. The ADR1 zinc fingers appear to make relatively few energetically significant contacts to DNA, perhaps as few as three in the first finger and one in the second.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.