Abstract

The gene encoding alanine dehydrogenase (AlaDH; EC 1.4.1.1) from the marine psychrophilic bacterium strain PA-43 was cloned, sequenced, and overexpressed in Escherichia coli. The primary structure was deduced on the basis of the nucleotide sequence. The enzyme subunit contains 371 amino acid residues, and the sequence is 90% and 77% identical, respectively, to AlaDHs from Shewanella Ac10 and Vibrio proteolyticus. The half-life of PA-43 AlaDH at 52 degrees C is 9 min, and it is thus more thermolabile than the AlaDH from Shewanella Ac10 or V. proteolyticus. The enzyme showed strong specificity for NAD(+) and l-alanine as substrates. The apparent K(m) for NAD(+) was temperature dependent (0.04 mM-0.23 mM from 15 degrees C to 55 degrees C). A comparison of the PA-43 deduced amino acid sequence to the solved three-dimensional structure of Phormidium lapideum AlaDH showed that there were likely to be fewer salt bridges in the PA-43 enzyme, which would increase enzyme flexibility and decrease thermostability. The hydrophobic surface character of the PA-43 enzyme was greater than that of P. lapideum AlaDH, by six residues. However, no particular modification or suite of modifications emerged as being clearly responsible for the psychrophilic character of PA-43 AlaDH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.