Abstract

AbstractN‐methacryloyl‐(L)‐alanine (MALA) was synthesized by using methacryloyl chloride and alanine as a metal‐complexing ligand or comonomer. Spherical beads with an average diameter of 150–200 μm were obtained by suspension polymerization of MALA and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(HEMA–MALA) beads were characterized by SEM, swelling studies, surface area measurement, and elemental analysis. Poly(HEMA–MALA) beads have a specific surface area of 68.5 m2/g. Poly(HEMA–MALA) beads with a swelling ratio of 63%, and containing 247 μmol MALA/g were used in the removal of Hg2+ from aqueous solutions. Adsorption equilibrium was achieved in about 60 min. The adsorption of Hg2+ ions onto PHEMA beads was negligible (0.3 mg/g). The MALA incorporation into the polymer structure significantly increased the mercury adsorption capacity (168 mg/g). Adsorption capacity of MALA containing beads increased significantly with pH. The adsorption of Hg2+ ions increased with increasing pH and reached a plateau value at around pH 5.0. Competitive heavy metal adsorption from aqueous solutions containing Cd2+, Cu2+, Pb2+, and Hg2+ was also investigated. The adsorption capacities are 44.5 mg/g for Hg2+, 6.4 mg/g for Cd2+, 2.9 mg/g for Pb2+, and 2.0 mg/g for Cu2+ ions. These results may be considered as an indication of higher specificity of the poly(HEMA–MALA) beads for the Hg2+ comparing to other ions. Consecutive adsorption and elution operations showed the feasibility of repeated use for poly(HEMA–MALA) chelating beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1222–1228, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call