Abstract

Nowadays brushless DC motors (BLDCMs) are becoming indispensable components as the electrification revolution in the mobility industry is happening. Electric kick scooters, so-called e-scooters, are among these micro-mobility vehicles which are powered by these motors. Due to the uncertain and nonlinear features, the controller performance developed for these motors degrades. For these reasons, a chattering-reduced cascaded Sliding Mode Control (SMC) scheme to effectively track reference motor speed in the outer loop by eliminating torque ripples in the inner loop current control was designed. Field-oriented Control (FOC) methodology was used to implement the SMC in the BLDCM. An exponential reaching law algorithm was proposed for sliding surfaces of the inner and outer loop controllers. The suitability and performance of electric scooter-hub motors were analyzed in terms of traction control. A cascaded speed and torque controller produced significantly favorable results representing minimized torque and current ripples, and operation over a wide speed range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call