Abstract

This research aimed to evaluate the capacity of acid-resistant purple nonsulfur bacteria, Rhodopseudomonas palustris strains VNW02, TLS06, VNW64, and VNS89, to resist Al3+ and Fe2+ and to investigate their potential to remove both metals from aqueous solutions using exopolymeric substances (EPS) and biomasses. Based on median inhibition concentration (IC50), strain VNW64 was the most resistant to both metals under conditions of aerobic dark and microaerobic light; however, strain TLS06 was more resistant to Al3+ under aerobic dark conditions. High metal concentrations resulted in an altered cellular morphology, particularly for strain TLS06. Metal accumulation in all tested PNSB under both incubating conditions as individual Al3+ or Fe2+ was in the order of cell wall > cytoplasm > cell membrane. This was also found in a mixed metal set only under conditions of aerobic dark as microaerobic light was in the degree of cytoplasm > cell wall > cell membrane. Of all strains tested, EPS from strain VNW64 had the lowest carbohydrate and the highest protein contents. Metal biosorption under both incubating conditions, EPS produced by strains VNW64 and TLS06, achieved greater removal (80 mg Al3+ L−1 and/or 300 mg Fe2+ L−1) than their biomasses. Additionally, strain VNW64 had a higher removal efficiency compared to strain TLS06. Based on the alteration in cellular morphology, including biosorption and bioaccumulation mechanisms, R. palustris strains VNW64 and TLS06 demonstrated their resistance to metal toxicity. Hence, they may have great potential for ameliorating the toxicity of Al3+ and Fe2+ in acid sulfate soils for rice cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call