Abstract

In this article, a combined H2O thermal atomic layer deposition of Al2O3 with in situ N2 plasma treatment process at 90 °C for encapsulation applications is reported. The effect of process parameters on the growth behavior and properties of Al2O3 thin films, such as elemental composition, residual stress, moisture permeation barrier ability, density, and roughness, is investigated. Optimization of plasma exposure time gives films with a low impurity (≈3.8 at% for hydrogen, ≈0.17 at% for carbon, and ≈0.51 at% for nitrogen), a high mass density (≈3.1 g cm−3), and a low tensile residual stress (≈160 MPa). A water vapor transmission rate of 2.9 × 10−3 g m−2 day−1 is obtained for polyethylene naphthalate substrates coated with 4‐nm‐thick Al2O3 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.