Abstract

We compared the characteristics of bottom-gate ZnO-thin film transistors using poly-4-vinylphenol (PVP) and PVP/Al2O3 dielectrics. The PVP dielectric is more hydrophobic than the PVP/Al2O3 dielectric and is not useful for TFT devices because of its high leakage current density, but this leakage current density can be significantly reduced by inserting Al2O3. We deposited ZnO and Al2O3 films by atomic layer deposition (ALD) because it is a low-temperature process. The ZnO-TFTs with either a PVP or a PVP/Al2O3 dielectric exhibit typical field-effect transistor characteristics with n-channel properties. The ZnO-TFT containing PVP/Al2O3 exhibits clear pinch-off and excellent saturation with an enhanced mode operation. The on/off ratio of 7.9 × 104 for the device containing the hybrid dielectric is about three orders of magnitude higher than the ratio of 47 for the device containing PVP. The subthreshold gate swings are 12 V/decade for the TFT containing PVP and 1.2 V/decade for the TFT containing PVP/Al2O3. The density of the interface trap state is significantly lower in the device containing PVP/Al2O3 than in the ZnO-TFT containing PVP. The saturation mobility was 0.05 and 0.8 cm2 V−1 s−1, respectively, in the TFTs containing PVP and PVP/Al2O3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.