Abstract

Major technological breakthroughs are often driven by advancements in materials research, and optics is no different. Over the last few years, near-zero-index (NZI) materials have triggered significant interest owing to their exceptional tunability of optical properties and enhanced light-matter interaction, leading to several demonstrations of compact, energy-efficient, and dynamic nanophotonic devices. Many of these devices have relied on transparent conducting oxides (TCOs) as a dynamic layer, as these materials exhibit a near-zero-index at telecommunication wavelengths. Among a wide range of techniques employed for the deposition of TCOs, atomic layer deposition (ALD) offers advantages such as conformality, scalability, and low substrate temperature. However, the ALD process often results in films with poor optical quality, due to low doping efficiencies at high (>1020cm−3) doping levels. In this work, we demonstrate a modified ALD process to deposit TCOs, taking Al:ZnO as an example, which results in an increase in doping efficiency from 13% to 54%. Moving away from surface saturation for the dopant (aluminum) precursor, the modified ALD process results in a more uniform distribution of dopants (Al) throughout the film, yielding highly conductive (2.8×10−4 Ω-cm) AZO films with crossover wavelengths as low as 1320nm and 1370nm on sapphire and silicon substrates, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.