Abstract
All Solid State Lithium Ion Batteries (ASS-LIB) have been attracting great attention due to their high temperature stability, energy density and safety. Cubic Li7La3Zr2O12 (LLZO) ceramic electrolyte is one of the most studied solid electrolyte because of its exceptionally high chemical stability against Li metal, air and moisture, thermal stability and very competitive ionic conductivity. In order to stabilize cubic LLZO, relatively high temperatures are required. On the other hand, it's possible to decrease sintering temperature and time with a stabilizer addition. In this study, 20–30 mol % Al containing LLZO electrolytes were prepared by solid state reaction method at varying sintering temperatures (1100 °C and 1150 °C) for varying sintering times (12 h and 24 h) and the characterization of resultant materials were carried out. XRD results showed that, small amount of other compounds such as LaAlO3 were present in the sample produced at 1100 °C–12 h along with the main phase of cubic LLZO structure. According to SEM images, the sintering temperature was found to be more effective than sintering time on the densification behaviour. Existing porosities were reduced when both sintering temperature and time were increased. Different amount of Al addition did not have an effect on the densification behaviour. Both intergranular and transgranular types of fractures were observed by SEM. Finally it was found that 30 mol % Al containing samples sintered at 1150 °C for 12 h showed mixed conductor behaviour, whereas for 24 h and 36 h pellets showed ionic conductor behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.