Abstract

The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated.

Highlights

  • Magnesium is actively used as a lightweight metal in the aerospace and automotive industries

  • The inert atmosphere used during disintegrated melt deposition (DMD) was effective in preventing oxidation of the Mg melt

  • Monolithic AZ31 and the AZ31/Al2O3 nanocomposite can be successfully synthesized using the DMD technique followed by hot extrusion

Read more

Summary

Introduction

Magnesium is actively used as a lightweight metal in the aerospace and automotive industries. The superior electromagnetic shielding and vibration damping characteristics of magnesium contribute to better health and well-being of the human body. This leads to better quality of life globally. AZ31 has recently been surface-reinforced with SiC microparticulates [1], C60 molecules [2], and multi-walled carbon nanotubes [3], using the friction stir processing technique. In these studies, good dispersion and hardening of the base matrix were reported.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.