Abstract

Aluminium Gallium Nitride (AlyGa1-yN) quantum dots (QDs) with thin sub-µm AlxGa1-xN layers (with x > y) were grown by molecular beam epitaxy on 3 nm and 6 nm thick hexagonal boron nitride (h-BN) initially deposited on c-sapphire substrates. An AlN layer was grown on h-BN and the surface roughness was investigated by atomic force microscopy for different deposited thicknesses. It was shown that for thicker AlN layers (i.e., 200 nm), the surface roughness can be reduced and hence a better surface morphology is obtained. Next, AlyGa1-yN QDs embedded in Al0.7Ga0.3N cladding layers were grown on the AlN and investigated by atomic force microscopy. Furthermore, X-ray diffraction measurements were conducted to assess the crystalline quality of the AlGaN/AlN layers and examine the impact of h-BN on the subsequent layers. Next, the QDs emission properties were studied by photoluminescence and an emission in the deep ultra-violet, i.e., in the 275-280 nm range was obtained at room temperature. Finally, temperature-dependent photoluminescence was performed. A limited decrease in the emission intensity of the QDs with increasing temperatures was observed as a result of the three-dimensional confinement of carriers in the QDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.