Abstract

We investigated the electronic sensitivity of pristine and Al-doped BN sheets to para-nitrophenol (p-NP) by using density functional calculations. It was found that p-NP adsorption on the pristine sheet is endothermic and unfavorable. By replacing adsorbing boron atom of the sheet surface by an Al atom, the sheet becomes more reactive to p-NP, so energy of 20.4kcal/mol is released upon adsorption process. Upon p-NP adsorption on the Al-doped BN sheet, HOMO/LUMO energy gap of the sheet is dramatically decreased from 5.39 to 1.23eV and it becomes a p-type semiconductor. Thus, the Al-doped BN sheet may transform the presence of p-NP molecule into an electrical signal, and it might be potentially used in p-NP sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.