Abstract

Sapphire and rubies (undoped and Cr-doped α-Al 2O 3 single crystals) have been deformed in compression at temperatures lower than those previously used in studies of dislocations in the basal slip plane. Above 1400 °C, several features associating stacking faults out of the basal planes and partial dislocations (dissociation and faulted dipoles) have been observed in previous transmission electron microscopy investigations. The formation of these features involves climb controlled by atomic diffusion. Properties of climb-dissociated dislocations are discussed in relation to dislocation dynamics. Transmission electron microscopy examination of dislocation structures at lower deformation temperatures (1000–1100 °C) shows that similar features are formed but that they often imply cross-slip. A new mechanism for the formation of faulted dipole by glide is presented and an explanation for the 30° Peierls valley orientation is proposed. The presence of chromium has a small influence on stacking fault energies on planes perpendicular to the basal plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.