Abstract

AKT is a central signaling protein kinase that plays a role in the regulation of cellular survival metabolism and cell growth, as well as in pathologies such as diabetes and cancer. Human AKT consists of three isoforms (AKT1-3) that may fulfill different functions. Here, we report that distinct subcellular localization of the isoforms directly influences their activity and function. AKT1 is localized primarily in the cytoplasm, AKT2 in the nucleus, and AKT3 in the nucleus or nuclear envelope. None of the isoforms actively translocates into the nucleus upon stimulation. Interestingly, AKT3 at the nuclear envelope is constitutively phosphorylated, enabling a constant phosphorylation of TSC2 at this location. Knockdown of AKT3 induces moderate attenuation of cell proliferation of breast cancer cells. We suggest that in addition to the stimulation-induced activation of the lysosomal/cytoplasmic AKT1-TSC2 pathway, a subpopulation of TSC2 is constitutively inactivated by AKT3 at the nuclear envelope of transformed cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.