Abstract
In this study, we investigated the role of Akt1 isoform in phenotypic change of vascular smooth muscle cells (VSMCs) and neointima formation. Laminin-induced conversion of synthetic VSMCs into contractile VSMCs was measured by expression of marker proteins for contractile VSMCs and collagen gel contraction assay. Culture of synthetic VSMCs on laminin-coated plates induced expression of marker proteins for contractile VSMCs and showed contraction in response to angiotensin II (AngII) stimulation. Silencing integrin-linked kinase attenuated activation of Akt and blocked phenotypic conversion of VSMCs resulting in the loss of AngII-dependent contraction. Laminin-induced phenotypic conversion of VSMCs was abrogated by phosphatidylinositol 3-kinase inhibitor or in cells silencing Akt1 but not Akt2. Proliferation of contractile VSMCs on laminin-coated plate was enhanced in cells silencing Akt1 whereas silencing Akt2 did not affect. Promoter activity of myocardin and SM22α was enhanced in contractile phenotype and overexpression of myocardin stimulated promoter activity of SM22α in synthetic phenotype. Promoter activity of myocardin and SM22α was reduced in cells silencing Akt1 and promoter activity of SM22α was restored by overexpression of myocardin in cells silencing Akt1. However, silencing of Akt2 affected neither promoter activity of myocardin nor SM22α. Finally, neointima formation in carotid artery ligation and high fat-diet-induced atherosclerosis was facilitated in mice lacking Akt1. This study demonstrates that Akt1 isoform stimulates laminin-induced phenotypic conversion of synthetic VSMCs by regulating the expression of myocardin. VSMCs become susceptible to shifting from contractile to synthetic phenotype by the loss of Akt1 in pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.