Abstract

Although erythropoietin (EPO) has been proven to significantly promote the proliferation of cancer cells, the mechanism for promoting glioma proliferation is poorly understood. Here, we examined the functional role of the AKT/GSK-3β/β-catenin signaling pathway in the EPO-mediated proliferation of glioma. The distribution of EPO and Ki-67 among clinical samples with different WHO grades was plotted by Immunological Histological Chemistry analysis. U87 and U251 glioma cell lines were treated with short hairpin RNA targeting (shEPO), recombinant human erythropoietin (rhEPO) and/or AKT-specific inhibitor (MK-2206). The changes in phosphorylated AKT, nuclear β-catenin, cyclin D1 and p27kip1 expression were detected.Cell cycle distributions and glioma proliferation in vitro and in vivo were analyzed. The expression level of EPO was significantly elevated with the increase of WHO grade and Ki67 in clinical glioma specimens. In vitro, knockdown of endogenous EPO in U87 and U251 cells effectively block the phosphorylation of AKT and GSK-3β and the expression of nuclear β-catenin. shEPO treatment also significantly decreased the expression of cyclin D1 and increased the expression of p27kip1. The cell cycle transition then slowed down and the proliferation of glioma cells or mouse xenograft tumors both decreased. Treatment of cells or tumors with extra rhEPO reversed the above biological effects mediated by shEPO. rhEPO-induced activation of the AKT/GSK-3β/β-catenin pathway and proliferation were abolished by MK-2206. Our study identified the AKT/GSK-3β/β-catenin axis as a critical mediator of EPO-induced glioma proliferation and further provided a clinically significant dimension to the biology of EPO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call