Abstract

Silver nanoparticles (AgNPs) are an environmental contaminant of emerging concern. Ionic and colloidal silver has long been used for its antimicrobial properties, but with the development of engineered AgNPs, these are increasingly incorporated in the manufacture of nano-enhanced products. AgNPs are released into the environment from manufacturing plants and they can be shed from products during use and after disposal. This can lead to chronic low-level environmental exposure in animals. Unlike traditional forms of silver, the unique physical properties of AgNPs allow them to bypass biological barriers and enter tissues, like the brain, where they can bioaccumulate. Thus, it is important to understand if low-level AgNPs induce physiological changes in brain cells. Previously we found that 1.0 μg/mL AgNP exposure resulted in disruption of f-actin organization and neurite collapse in cultured differentiating adult neural stem cells, and that interaction with β-catenin signaling was involved. Here, we report that AgNP exposure may interact with pAkt signaling irreversibly or indirectly to disrupt cytoskeleton and inhibit neurite extension. Furthermore, the MAPK/ERK signaling pathway is not a target for AgNP-mediated dysregulation. Environmental exposure to low-level AgNPs therefore appears to target specific cellular mechanisms to alter brain cell physiology. Understanding these underlying mechanisms is important for decisions regulating the use and disposal of manufactured AgNPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call