Abstract
Estivation, a state of aerobic dormancy, facilitates survival during adverse environmental conditions and is characterized at the molecular level by regulatory protein phosphorylation. The Akt (protein kinase B) signaling pathway regulates diverse responses in cells and the present study analyzes its role in the estivating desert snail Otala lactea. Kinetic analysis (maximal velocity, substrate affinities) determined that Akt was activated in tissues of estivating snails and Western blotting and in vitro incubations promoting changes to Akt phosphorylation state both confirmed that higher amounts of active (phosphorylated Ser473) Akt were present during estivation. Akt protein stability was also enhanced during estivation as assessed from urea denaturation studies. Multiple downstream targets of Akt were differentially regulated during estivation. Estivating animals showed elevated levels of phosphorylated FOXO3a (Ser253) and BAD (Ser136), no change in mTOR (Ser2481 and Ser2448), and reduced amounts of phosphorylated glycogen synthase kinase-3 (GSK-3) β subunit (Ser9). Kinetic analysis of GSK-3 showed 1.5–1.7 fold higher activities in estivating snails coupled with increased GSK-3 substrate affinities in hepatopancreas. The data suggest an active role for Akt signaling during estivation emphasizing anti-apoptotic actions but uncoupling growth/proliferation actions to help achieve life extension on a limited energy budget.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.