Abstract

Sustained activation of AMP-activated protein kinase (AMPK) induces apoptosis in several cell types. In pancreatic beta cells this occurs under glucose limitation, or in the presence of the pharmacological AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR). It is unknown whether Akt activation can counteract AMPK-mediated apoptosis, nor whether mTOR activation downstream of Akt mediates any survival signal in these conditions. We report that expression of a constitutively active form of Akt increases mTOR activity and prevents apoptosis upon AMPK activation. Akt-mediated survival was inhibited by rapamycin. Expression of a constitutively active form of the mTOR target ribosomal protein S6 kinase (S6K) or of translation factor eIF4E reduced apoptosis by glucose limitation, and co-expression of S6K and eIF4E protected beta cells to the same extent as active Akt. The protective effects of active Akt and S6K were associated with increased cellular protein synthesis activity. It is concluded that Akt stimulation of mTOR and subsequent activation of the targets by which mTOR affects protein translation are required and sufficient mechanisms for Akt-mediated survival of beta cells undergoing sustained AMPK activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.