Abstract

Glioblastoma (GBM) is one of the malignant tumors with high mortality, and the presence of the blood brain barrier (BBB) severely limits the penetration and tissue accumulation of therapeutic agents in the lesion of GBM. Active targeting nanotechnologies can achieve efficient drug delivery in the brain, while still have a very low success rate. Here we revealed a previously unexplored phenomenon that chemotherapy with active targeting nanotechnologies causes pathological BBB functional recovery through VEGF-PI3K-AKT signaling pathway inhibition, accompanied with up-regulated expression of Claudin-5 and Occludin. Seriously, pathological BBB functional recovery induces a significant decrease of intracerebral active targeting nanotechnologies transport during GBM multiple administration, leading to chemotherapy failure in GBM therapeutics. To address this issue, we chose AKT agonist SC79 to transiently re-open functional recovering pathological BBB for continuously intracerebral delivery of brain targeted nanotherapeutics, finally producing an observable anti-GBM effect in vivo, which may offer new sight for other CNS disease treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.