Abstract
Convolutional kernels have significant affections on feature learning of convolutional neural network (CNN). However, it is still a challenging problem to determine appropriate kernel width. Moreover, some features learned by convolutional layers are still redundant and noisy. Thus, adaptive selection of kernel width and feature selection of feature maps are key techniques to improve feature learning performance of CNNs. In this paper, a new deep neural network (DNN) model, adaptive kernel sparse network (AKSNet) is proposed to extract multi-scale fault features from one-dimensional (1-D) vibration signals. Firstly, an adaptive kernel selection method is developed, where multiple branches with different kernels are used to extract multi-scale features from vibration signals. Channel-wise attention is developed to fuse features generated by these kernels to obtain different informative scales. Secondly, a spatial attention is used for dynamic receptive field to focus on salient region of feature maps. Thirdly, a sparse regularization layer is embedded in the deep network to further filter noise and highlight impaction of the feature maps. Finally, two cases are adopted to verify effectiveness of AKSNet-based feature learning for bearing fault diagnosis. Experimental results show that AKSNet can effectively extract features from multi-channel vibration signals and then improves fault diagnosis performance of the classifier significantly. AKSNet shows better recognition performance in comparison with that of shallow neural networks and other typical DNNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.