Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. A. muciniphila and its outer membrane protein Amuc_1100 ameliorate metabolic disorders, enteritis, depression, and other diseases in mice. The NAFLD mouse model was established by feeding a high-fat diet (HFD) for 10 weeks. To assess the effect of A. muciniphila and Amuc_1100 on NAFLD, we used atorvastatin, a common lipid-lowering drug, as a positive control. A. muciniphila and Amuc_1100 significantly reduced body weight and serum ALT and AST levels, and improved serum lipid levels in NAFLD mice, which had similar effects to Ator. In addition, A. muciniphila and Amuc_1100 decreased the concentration of LPS in the serum and upregulated the mRNA expression of the colonic tight junction proteins. In the liver, A. muciniphila and Amuc_1100 significantly reduced the mRNA expression levels of nodular receptor protein 3 (NLRP3) and Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB), and the protein and mRNA expression levels inflammatory cytokines. At the genus level, Amuc_1100 treatment significantly reduced the abundance of Coriobacteriaceae_UCG-002 produced by the HFD. The abundances of Blautia, norank_f__Ruminococcaceae, Lachnoclostridium, GCA-900066575 and Lachnospiraceae_UCG-006 increased dramatically. Together, A. muciniphila and Amuc_1100 alleviate HFD-induced NAFLD by acting on the gut-liver axis and regulating gut microbes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call