Abstract
The aluminosilicate clay minerals (Al2Si2O5(OH)4·nH2O) known to exist in nature are called halloysite nanotubes (HNTs). HNTs, which are found in layered, spherical, flat and other forms, can be obtained naturally as well as synthetically. HNTs with an outer diameter of 50 nm and a length ranging from 500 to 1000 nm have a hollow and nanotube-shaped structure. It has natural deposits in Brazil, Turkey, New Zealand, China, the United States, Korea, Japan, and France, and it is a low-cost material that can be obtained through ore purification. Thanks to their high surface area, large pore volume, rheological properties, high interactions, and high binding capacities with biopolymers, HNTs are used in a wide range of areas. For example, HNTs have become a frequently used material in environmental applications such as wastewater treatment and removal of organic contaminants and dyes. It is also used in the production of nanoelectronics and nanocomposites, catalytic studies, flame retardants in make-up materials, forensic sciences and biomedical fields. The specific properties of HNT used in the biomedical field lead to numerous applications. In this review, it is aimed to present the advantages of HNTs for use in drug delivery systems, immune therapy, anti-infection applications, cancer therapy, bioimaging, biosensing applications, tissue engineering applications, implants and hygiene-cosmetics materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.