Abstract
Impacts of temperature assimilation on Venusian thermal tides are investigated by the observing system simulation experiments assuming Akatsuki Longwave Infrared Camera (LIR) observations. Synthetic temperature data are prepared by a Venusian general circulation model (VGCM) to test if LIR temperature data resolves a discrepancy in the structure of thermal tides between observations and the VGCM. They are assimilated at 70 km altitude with several combinations of frequency and horizontal region. The result shows that the three-dimensional structure of thermal tides is significantly improved not only in temperature but also in horizontal wind, even if observations are available only at a limited frequency of 6-hourly or on the dayside. The zonal–mean zonal wind and temperature fields are also modified at 60–80 km altitudes globally through the vertical momentum transport of thermal tides. It would be promising to assimilate Akatsuki LIR observations to produce realistic objective analysis of the Venus atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.