Abstract

Phosphorylation of ion channels plays a critical role in the modulation and amplification of biophysical signals. Kinases and phosphatases have broad substrate recognition sequences. Therefore, the targeting of kinases and phosphatases to specific sites enhances the regulation of diverse signaling events. Ion channel macromolecular complexes can be formed by the association of A-kinase anchoring proteins (AKAPs) or other adaptor proteins directly with the channel. The discovery that leucine/isoleucine zippers play an important role in the recruitment of phosphorylation-modulatory proteins to certain ion channels has permitted the elucidation of specific ion channel macromolecular complexes. Disruption of signaling complexes by genetic defects can lead to abnormal physiological function. This chapter will focus on evidence supporting the concept that ion channel macromolecular complex formation plays an important role in regulating channel function in normal and diseased states. Moreover, we demonstrate that abnormal complex formation may directly lead to abnormal channel regulation by cellular signaling pathways, potentially leading to arrhythmogenesis and cardiac dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.