Abstract
Segmentation is required to quantify cellular structures in microscopic images. This typically requires their fluorescent labeling. Convolutional neural networks (CNNs) can detect these structures also in only transmitted light images. This eliminates the need for transgenic or dye fluorescent labeling, frees up imaging channels, reduces phototoxicity and speeds up imaging. However, this approach currently requires optimized experimental conditions and computational specialists. Here, we introduce "aiSEGcell" a user-friendly CNN-based software to segment nuclei and cells in bright field images. We extensively evaluated it for nucleus segmentation in different primary cell types in 2D cultures from different imaging modalities in hand-curated published and novel imaging data sets. We provide this curated ground-truth data with 1.1 million nuclei in 20,000 images. aiSEGcell accurately segments nuclei from even challenging bright field images, very similar to manual segmentation. It retains biologically relevant information, e.g. for demanding quantification of noisy biosensors reporting signaling pathway activity dynamics. aiSEGcell is readily adaptable to new use cases with only 32 images required for retraining. aiSEGcell is accessible through both a command line, and a napari graphical user interface. It is agnostic to computational environments and does not require user expert coding experience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.