Abstract

The Airy structure in $^{16}$O+$^{14}$C rainbow scattering is studied with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for $^{16}$O using a density-dependent nucleon-nucleon force. The experimental angular distributions at $E_L$=132, 281 and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum at around $\theta$=76$^\circ$ in the angular distribution at $E_L$=132 MeV is assigned as the second order Airy minimum $A2$ in contrast to the recent literature which assigns it as the third order $A3$. The Airy minima in the 90$^\circ$ excitation function is investigated in comparison with well-known $^{16}$O+$^{16}$O and $^{12}$C+$^{12}$C systems. Evolution of the Airy structure into the molecular resonances with the $^{16}$O+$^{14}$C cluster structure in the low energy region around $E_{c.m.}$=30 MeV is discussed. It is predicted theoretically for the first time for a non-$4N$ $^{16}$O+$^{14}$C system that Airy elephants in the 90$^\circ$ excitation function are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.