Abstract
We construct a class of ℓ $\ell$ -adic local systems on A 1 $\mathbb {A}^1$ that generalizes the Airy sheaves defined by N. Katz to reductive groups. These sheaves are finite field analogues of generalizations of the classical Airy equation y ′ ′ ( z ) = z y ( z ) $y^{\prime \prime }(z)=zy(z)$ . We employ the geometric Langlands correspondence to construct the sought-after local systems as eigenvalues of certain rigid Hecke eigensheaves, following the methods developed by Heinloth, Ngô, and Yun. The construction is motivated by a special case of Adler and Yu's construction of tame supercuspidal representations. The representations that we consider can be viewed as deeper analogues of simple supercuspidals. For GL n $\mathrm{GL}_n$ , we compute the Frobenius trace of the local systems in question and show that they agree with Katz's Airy sheaves. We make precise conjectures about the ramification behavior of the local systems at ∞ $\infty$ . These conjectures, in particular, imply cohomological rigidity of Airy sheaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.