Abstract
Airy integrals are very classical but in recent years they have been generalized to higher dimensions and these generalizations have proved to be very useful in studying the topology of the moduli spaces of curves. We study a natural generalization of these integrals when the ground field is a non-archimedean local field such as the field of p-adic numbers. We prove that the p-adic Airy integrals are locally constant functions of moderate growth and present evidence that the Airy integrals associated with compact p-adic Lie groups also have these properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.