Abstract

Over the last dozen of years, the area of accelerating waves has made considerable advances not only in terms of fundamentals and experimental demonstrations but also in connection to a wide range of applications. Starting from the prototypical Airy beam that was proposed and observed in 2007, new families of accelerating waves have been identified in the paraxial and nonparaxial domains in space and/or time, with different methods developed to control at will their trajectory, amplitude, and beam width. Accelerating optical waves exhibit a number of highly desirable attributes. They move along a curved or accelerating trajectory while being resilient to perturbations (self-healing), and, are diffraction-free. It is because of these particular features that accelerating waves have been utilized in a variety of applications in the areas of filamentation, beam focusing, particle manipulation, biomedical imaging, plasmons, and material processing among others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.