Abstract

Theoretically formulated in the 1970s within the context of nonrelativistic quantum mechanics, Airy beams have been experimentally realized for the first time only recently, paving the way to innovative optical techniques. While their remarkable features, a non-diffracting property and a transverse shift of the intensity maximum during propagation, are currently theoretically described from the wave optics viewpoint, here their exact relation to rays and geometric wavefront aberrations is revealed using a wavefront family that includes two-dimensional Airy beams. Several members of this family are computationally and experimentally implemented here. The lateral shift of Airy beams during propagation is presented in the context of the three-dimensional caustic representation. This new description allows re-emphasizing the use of "Airy-like" beams in computational imaging for depth of focus extension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call