Abstract

Multiple and paradoxical effects of airway smooth muscle (ASM) 7-transmembrane-spanning receptors activated during asthma, or by treatment with bronchodilators such as beta(2)-adrenergic receptor (beta(2)AR) agonists, indicate extensive receptor crosstalk. We examined the signaling of the prostanoid-EP(1) receptor, since its endogenous agonist prostaglandin E(2) is abundant in the airway, but its functional implications are poorly defined. Activation of EP(1) failed to elicit ASM contraction in mouse trachea via this G(alphaq)-coupled receptor. However, EP(1) activation markedly reduced the bronchodilatory function of beta(2)AR agonist, but not forskolin, indicating an early pathway interaction. Activation of EP(1) reduced beta(2)AR-stimulated cAMP in ASM but did not promote or augment beta(2)AR phosphorylation or alter beta(2)AR trafficking. Bioluminescence resonant energy transfer showed EP(1) and beta(2)AR formed heterodimers, which were further modified by EP(1) agonist. In cell membrane [(35)S]GTPgammaS binding studies, the presence of the EP(1) component of the dimer uncoupled beta(2)AR from G(alphas), an effect accentuated by EP(1) agonist activation. Thus alone, EP(1) does not appear to have a significant direct effect on airway tone but acts as a modulator of the beta(2)AR, altering G(alphas) coupling via steric interactions imposed by the EP(1):beta(2)AR heterodimeric signaling complex and ultimately affecting beta(2)AR-mediated bronchial relaxation. This mechanism may contribute to beta-agonist resistance found in asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.