Abstract

The explanted lung slice has become a popular in vitro system for studying how airways contract. Because the forces of airway-parenchymal interdependence are such important modulators of airway narrowing, it is of significant interest to understand how the parenchyma around a constricting airway in a lung slice behaves. We have previously shown that the predictions of the 2-dimensional distortion field around a constricting airway are substantially different depending on whether the parenchyma is modeled as an elastic continuum versus a network of hexagonally arranged springs, which raises the question as to which model best explains the lung slice. We treated lung slices with methacholine and then followed the movement of a set of parenchymal landmarks around the airway as it narrowed. The resulting parenchymal displacement field was compared to the displacement fields predicted by the continuum and hexagonal spring network models. The predictions of the continuum model were much closer to the measured data than were those of the hexagonal spring network model, suggesting that the parenchyma in the lung slice behaves like an elastic continuum rather than a network of discrete springs. This may be because the alveoli of the lung slice are filled with agarose in order to provide structural stability, causing the parenchyma in the slice to act like a true mechanical continuum. How the air-filled parenchyma in the intact lung behave in vivo remains an open question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call