Abstract

BackgroundAirway remodeling in patients with asthma, which leads to a decline in pulmonary function, is likely the result of repeated exacerbations often provoked by aeroallergen exposures. Aeroallegen exposure triggers a stereotypic response orchestrated by growth factor cytokines and other protein mediators. This results in a late-phase allergic reaction characterized by vascular permeability, recruitment of activated leukocytes, and activation of structural cells of the airway. The spectrum of protein mediators and their functions are incompletely understood.MethodsBronchoalveolar lavage fluid (BALF) samples were obtained from 12 volunteers who exhibited robust eosinophilic recruitment following segmental bronchial provocation with allergen (SBP-Ag). We systematically identified and quantified proteins in BALF using high-performance liquid chromatography–high-resolution mass spectrometry (LC–MS/MS) followed by pathway analysis and correlations with airway physiology.ResultsPairwise analysis of protein abundance in BALF pre- vs post-SBP-Ag revealed that 55 proteins were upregulated and 103 proteins were downregulated. We observed enrichment of groups of proteins mapping to hemostasis/fibrin clot, platelet activation, lipoprotein assembly, neutrophil degranulation proteins, and acute-phase inflammation-airway remodeling pathways. The abundances of F2 and Fibrinogen γ (FGG) correlated with eosinophil numbers, whereas SERPINA3 negatively correlated with change in FeNO. The coagulation proteins F2 and KNG negatively correlated with FN1 an index of airway remodeling. Interestingly, patients with lower FEV1 showed distinct allergen-induced patterns of 8 BALF proteins, including MUC1, alarmins (HSPB1), and actin polymerization factors.ConclusionsProtein abundance of the fibrin formation cascade, platelet activation and remodeling are associated with late-phase leukocyte numbers and markers of remodeling. Patients with lower FEV1 have distinct dynamic responses to allergen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.