Abstract

Airway epithelial cells (AECs) orchestrate inflammatory responses to airborne irritants that enter the respiratory system. A viscous mucus layer produced by goblet cells in the airway epithelium also contributes to a physiological defense mechanism through the physical and chemical barriers it provides. Dysregulation or impairment in these functions has been implicated as a cause of the chronic inflammation and tissue remodeling that constitute major pathological features of asthma. In particular, mucus hypersecretion leading to airway obstruction and impaired pulmonary function is associated with morbidity and mortality in asthma patients. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor involved in a variety of cellular processes. Accumulating evidence indicates that PPARγ agonists antagonize exaggerated inflammatory responses, yet PPARγ's precise role in airway remodeling/mucus hypersecretion has yet to be defined. In this study, we created an AEC-specific PPARγ (AEC-PPARγ) deletion to investigate PPARγ's functions in a murine model of allergic airway disease. AEC-PPARγ deficiency exaggerated airway hyperresponsiveness, inflammation, cytokine expression, and tissue remodeling. We also found that PPARγ directly bound to a PPAR response element found in MUC5AC and repressed gene expression. Likewise, PPARγ regulated mucin and inflammatory factors in primary human bronchial epithelial cells. In light of the current standard therapies' limited and inadequate direct effect on airway mucus hypersecretion, our study showing AEC-PPARγ's role as a transcriptional repressor of MUC5AC highlights this receptor's potential as a pharmacological target for asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call