Abstract

This study was designed to assess: a) whether rowing affects airway cell composition, and b) the possible relationship between the degree of ventilation during exercise and airway cells. In nine young, nonasthmatic competitive rowers (mean age +/- SD: 16.2 +/- 1.0 yr), induced sputum samples were obtained at rest and shortly after an all-out rowing test over 1000 m (mean duration: 200 +/- 14 s), during which ventilatory and metabolic variables were recorded breath-by-breath (Cosmed K4b, Italy). At rest, induced sputum showed prevalence of neutrophils (60%) over macrophages (40%); after exercise, total cell and bronchial epithelial cell (BEC) counts tended to increase. In the last minute of exercise, mean VE was 158.0 +/- 41.5 L x min(-1), and VO2 x kg(-1) 62 +/- 11 mL x min(-1). Exercise VE correlated directly with postexercise total cell (Spearman rho: 0.75, P < 0.05) an dmacrophage (rho: 0.82, P < 0.05) counts. A similar trend was observed for exercise VE and changes in BEC counts from baseline to postexercise (rho: 0.64, P = 0.11). Exercise VE did not correlate with airway neutrophil counts at rest or after exercise. Expression of adhesion molecules by airway neutrophils, macrophages, and eosinophils decreased after the all-out test. Similar to endurance athletes, nonasthmatic competitive rowers showed increased neutrophils in induced sputum compared with values found in sedentary subjects. The trend toward increased BEC postexercise possibly reflected the effects of high airflows on airway epithelium. Airway macrophages postexercise were highest in rowers showing tile most intense exercise hyperpnea, suggesting early involvement of these cells during exercise. However, the low expression of adhesion molecules by all airway cell types suggests that intense short-lived exercise may be associated with a blunted response of airway cells in nonasthmatic well-trained rowers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.