Abstract

The relationship between air-water interfacial area and capillary pressure under higher water-content conditions is investigated for four natural porous media. The results show that the magnitude of the air-water interfacial area increases with increasing capillary pressure, consistent with the decrease in water saturation. The maximum observed air-water interfacial areas are dependent upon the magnitude of residual water saturation, which itself is condition dependent. The more well-sorted porous medium exhibited a greater rate of change of air-water interfacial area with capillary pressure than the more poorly-sorted porous media. The observed relationship between air-water interfacial area and capillary pressure was quantified by coupling an empirical equation describing the air-water interfacial area vs. water saturation relationship with the van Genuchten equation relating water saturation and capillary pressure. This equation produced reasonable simulations of the measured data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call