Abstract

Airtightness is a major issue in architectural design and it has a significant impact on the energy performance of buildings. Moreover, the energy behaviour of built heritage is due, to its singular characteristics, still a great unknown. The aim of this study is to establish a better knowledge of the airtightness of historical buildings, based on an in depth field study using blower-door tests. A set of 37 enclosures were analyzed inside eight buildings located in historical areas of a Spanish city with a significant built heritage. They were constructed between 1882 and 1919 and include diverse construction typologies applied for many building uses such as residential, cultural, educational, administrative and emblematic. The results indicate lower values compared to other previous airtightness studies of historical buildings. The average air change rate was found to be n50 = 9.03 h−1 and the airtightness of the enclosures presented a wide range of between 0.68 and 37.12 h−1. Three main levels of airtightness were identified with two thirds of the tested samples belonging to the intermediate level between 3–20 h−1. To conclude, several correlations have been developed which provide a method to estimate air leakage and could serve as a basis for energy performance studies of these kinds of building.

Highlights

  • The ventilation of buildings is the mechanism that ensures good indoor air quality (IAQ)

  • A general overview displays a considerable deviation of the results and a wide gap between the maximum and minimum airtightness

  • Apart from the studies conducted in historical buildings, there is only one case [32] whose the average airtightness exceeds the results of the present study

Read more

Summary

Introduction

The ventilation of buildings is the mechanism that ensures good indoor air quality (IAQ). The impact of ventilation accounts for approximately 30–60% of buildings’ energy consumption [1]. Due to this effect, there is a considerable conflict between the reduction of ventilation rates to minimize the heating/cooling demand, and the increase of ventilation rate to improve the IAQ. On the one hand air movements provoke local thermal discomfort, determined by the draught rate, as defined in the ISO 7730:2005 [12], and on the other hand it increases the energy demand of buildings due to the uncontrolled air leakage. The choice of one or another indicator depends often on local regulation requirements or in the criteria of each technician and/or client

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.