Abstract
Surface layer fluxes of sensible heat and water vapor were measured from a fixed platform in the North Sea during the Humidity Exchange over the Sea (HEXOS) Main Experiment (HEXMAX). Eddy wind stress and other relevant atmospheric and oceanic parameters were measured simultaneously and are used to interpret the heat and water vapor flux results. One of the main goals of the HEXOS program was to find accurate empirical heat and water vapor flux parameterization formulas for high wind conditions over the sea. It had been postulated that breaking waves and sea spray, which dominate the air‐sea interface at high wind speeds, would significantly affect the air‐sea heat and water vapor exchange for wind speeds above 15 m/s. Water vapor flux has been measured at wind speeds up to 18 m/s, sufficient to test these predictions, and sensible heat flux was measured at wind speeds up to 23 m/s. Within experimental error, the HEXMAX data do not show significant variation of the flux exchange coefficients with wind speed, indicating that modification of the models is needed. Roughness lengths for heat and water vapor derived from these direct flux measurements are slightly lower in value but closely parallel the decreasing trend with increasing wind speed predicted by the surface renewal model of Liu et al. [1979], created for lower wind speed regimes, which does not include effects of wave breaking. This suggests that either wave breaking does not significantly affect the surface layer fluxes for the wind speed range in the HEXMAX data, or that a compensating negative feedback process is at work in the lower atmosphere. The implication of the feedback hypothesis is that the moisture gained in the lower atmosphere from evaporation of sea spray over rough seas may be largely offset by decreased vapor flux from the air‐sea interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.